273 research outputs found

    Linked Data - the story so far

    No full text
    The term “Linked Data” refers to a set of best practices for publishing and connecting structured data on the Web. These best practices have been adopted by an increasing number of data providers over the last three years, leading to the creation of a global data space containing billions of assertions— the Web of Data. In this article, the authors present the concept and technical principles of Linked Data, and situate these within the broader context of related technological developments. They describe progress to date in publishing Linked Data on the Web, review applications that have been developed to exploit the Web of Data, and map out a research agenda for the Linked Data community as it moves forward

    Using ChatGPT for Entity Matching

    Full text link
    Entity Matching is the task of deciding if two entity descriptions refer to the same real-world entity. State-of-the-art entity matching methods often rely on fine-tuning Transformer models such as BERT or RoBERTa. Two major drawbacks of using these models for entity matching are that (i) the models require significant amounts of fine-tuning data for reaching a good performance and (ii) the fine-tuned models are not robust concerning out-of-distribution entities. In this paper, we investigate using ChatGPT for entity matching as a more robust, training data-efficient alternative to traditional Transformer models. We perform experiments along three dimensions: (i) general prompt design, (ii) in-context learning, and (iii) provision of higher-level matching knowledge. We show that ChatGPT is competitive with a fine-tuned RoBERTa model, reaching an average zero-shot performance of 83% F1 on a challenging matching task on which RoBERTa requires 2000 training examples for reaching a similar performance. Adding in-context demonstrations to the prompts further improves the F1 by up to 5% even using only a small set of 20 handpicked examples. Finally, we show that guiding the zero-shot model by stating higher-level matching rules leads to similar gains as providing in-context examples

    Column Type Annotation using ChatGPT

    Full text link
    Column type annotation is the task of annotating the columns of a relational table with the semantic type of the values contained in each column. Column type annotation is a crucial pre-processing step for data search and integration in the context of data lakes. State-of-the-art column type annotation methods either rely on matching table columns to properties of a knowledge graph or fine-tune pre-trained language models such as BERT for the column type annotation task. In this work, we take a different approach and explore using ChatGPT for column type annotation. We evaluate different prompt designs in zero- and few-shot settings and experiment with providing task definitions and detailed instructions to the model. We further implement a two-step table annotation pipeline which first determines the class of the entities described in the table and depending on this class asks ChatGPT to annotate columns using only the relevant subset of the overall vocabulary. Using instructions as well as the two-step pipeline, ChatGPT reaches F1 scores of over 85% in zero- and one-shot setups. To reach a similar F1 score a RoBERTa model needs to be fine-tuned with 300 examples. This comparison shows that ChatGPT is able deliver competitive results for the column type annotation task given no or only a minimal amount of task-specific demonstrations

    Product Attribute Value Extraction using Large Language Models

    Full text link
    E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient

    SC-Block: Supervised Contrastive Blocking within Entity Resolution Pipelines

    Full text link
    The goal of entity resolution is to identify records in multiple datasets that represent the same real-world entity. However, comparing all records across datasets can be computationally intensive, leading to long runtimes. To reduce these runtimes, entity resolution pipelines are constructed of two parts: a blocker that applies a computationally cheap method to select candidate record pairs, and a matcher that afterwards identifies matching pairs from this set using more expensive methods. This paper presents SC-Block, a blocking method that utilizes supervised contrastive learning for positioning records in the embedding space, and nearest neighbour search for candidate set building. We benchmark SC-Block against eight state-of-the-art blocking methods. In order to relate the training time of SC-Block to the reduction of the overall runtime of the entity resolution pipeline, we combine SC-Block with four matching methods into complete pipelines. For measuring the overall runtime, we determine candidate sets with 99.5% pair completeness and pass them to the matcher. The results show that SC-Block is able to create smaller candidate sets and pipelines with SC-Block execute 1.5 to 2 times faster compared to pipelines with other blockers, without sacrificing F1 score. Blockers are often evaluated using relatively small datasets which might lead to runtime effects resulting from a large vocabulary size being overlooked. In order to measure runtimes in a more challenging setting, we introduce a new benchmark dataset that requires large numbers of product offers to be blocked. On this large-scale benchmark dataset, pipelines utilizing SC-Block and the best-performing matcher execute 8 times faster than pipelines utilizing another blocker with the same matcher reducing the runtime from 2.5 hours to 18 minutes, clearly compensating for the 5 minutes required for training SC-Block

    WDC Products: A Multi-Dimensional Entity Matching Benchmark

    Get PDF
    The difficulty of an entity matching task depends on a combination of multiple factors such as the amount of corner-case pairs, the fraction of entities in the test set that have not been seen during training, and the size of the development set. Current entity matching benchmarks usually represent single points in the space along such dimensions or they provide for the evaluation of matching methods along a single dimension, for instance the amount of training data. This paper presents WDC Products, an entity matching benchmark which provides for the systematic evaluation of matching systems along combinations of three dimensions while relying on real-word data. The three dimensions are (i) amount of corner-cases (ii) generalization to unseen entities, and (iii) development set size. Generalization to unseen entities is a dimension not covered by any of the existing benchmarks yet but is crucial for evaluating the robustness of entity matching systems. WDC Products is based on heterogeneous product data from thousands of e-shops which mark-up products offers using schema.org annotations. Instead of learning how to match entity pairs, entity matching can also be formulated as a multi-class classification task that requires the matcher to recognize individual entities. WDC Products is the first benchmark that provides a pair-wise and a multi-class formulation of the same tasks and thus allows to directly compare the two alternatives. We evaluate WDC Products using several state-of-the-art matching systems, including Ditto, HierGAT, and R-SupCon. The evaluation shows that all matching systems struggle with unseen entities to varying degrees. It also shows that some systems are more training data efficient than others

    The Web Data Commons Structured Data Extraction

    Get PDF
    More and more websites annotate their content using different markup formats. These annotations involve a large number of topics such as persons, events, products, hotels, organizations and cities. The purpose of embedding structured data in HTML pages is to make the content of those pages understandable to web applications. In this way, the retrieval and integration of data deriving from different web pages is greatly facilitated. The presented poster gives an overview of the Web Data Commons - structured data project for the year 2016. The Web Data Commons project extracts structured data from the web corpus provided by Common Crawl, the largest public web corpus, and offers the extracted data for public download. In order to process these huge amounts of data, Web Data Commons builds upon its Extraction Framework and the Amazon Web Services

    Column type annotation using ChatGPT

    Get PDF
    Column type annotation is the task of annotating the columns of a relational table with the semantic type of the values contained in each column. Column type annotation is an important pre-processing step for data search and data integration in the context of data lakes. State-of-the-art column type annotation methods either rely on matching table columns to properties of a knowledge graph or fine-tune pre-trained language models such as BERT for column type annotation. In this work, we take a different approach and explore using ChatGPT for column type annotation. We evaluate different prompt designs in zero- and few-shot settings and experiment with providing task definitions and detailed instructions to the model. We further implement a two-step table annotation pipeline which first determines the class of the entities described in the table and depending on this class asks ChatGPT to annotate columns using only the relevant subset of the overall vocabulary. Using instructions as well as the two-step pipeline, ChatGPT reaches F1 scores of over 85% in zero- and one-shot setups. To reach a similar F1 score a RoBERTa model needs to be fine-tuned with 356 examples. This comparison shows that ChatGPT is able deliver competitive results for the column type annotation task given no or only a minimal amount of task-specific demonstrations

    Integrating product data using deep learning : Art.-Nr. 11

    Get PDF
    Product matching is the task of deciding whether two product descriptions refer to the same real-world product. Product matching is a central task in e-commerce applications such as online market places and price comparison portals, as these applications need to find out which offers refer to the same product before they can integrate data from the offers or compare product prices. Product matching is a non-trivial task as merchants describe products in different ways and as small differences in the product descriptions matter for distinguishing between different variants of the same product. A successful approach for dealing with the heterogeneity of product offers is to combine deep learning-based matching techniques with large amounts of training data which can be extracted from Web corpora such as the Common Crawl. Training deep learning methods involving millions of parameters for use cases such as product matching requires access to large compute resources. In this extended abstract, we report how we trained different RNN- and BERT-based models for product matching using the bwHPC infrastructure and how this extended training allowed us to reach peak performance. Afterwards, we describe how we use the bwHPC infrastructure for our ongoing research on table representation learning for data integration
    • …
    corecore